Installing and Configuring Cozystack

Step 3: Installing Cozystack on a Kubernetes Cluster, getting administrative access, and configuring the dashboard.

The third step in deploying a Cozystack cluster is to install Cozystack on a Kubernetes cluster that has been previously installed and configured on Talos Linux nodes. A prerequisite to this step is having installed a Kubernetes cluster.

If this is your first time installing Cozystack, consider starting with the Cozystack tutorial.

To plan a production-ready installation, follow the guide below. It mirrors the tutorial in structure, but gives much more details and explains various installation options.

1. Define Cluster Configuration

Installing Cozystack starts with a single ConfigMap. This ConfigMap includes Cozystack bundle and components setup, key network settings, exposed services, and other options.

Cozystack configuration can be updated after installing it. However, some values, as shown below, are required for installation.

Here’s a minimal example of cozystack.yaml:

apiVersion: v1
kind: ConfigMap
metadata:
  name: cozystack
  namespace: cozy-system
data:
  bundle-name: "paas-full"
  root-host: "example.org"
  api-server-endpoint: "https://api.example.org:443"
  expose-services: "dashboard,api"
  ipv4-pod-cidr: "10.244.0.0/16"
  ipv4-pod-gateway: "10.244.0.1"
  ipv4-svc-cidr: "10.96.0.0/16"
  ipv4-join-cidr: "100.64.0.0/16"

For the explanation of each configuration parameter, see the ConfigMap reference.

1.1. Choose a Bundle

The composition of Cozystack is defined by a bundle. Bundle paas-full is the most complete one, as it covers all layers from hardware to managed applications. Choose it if you deploy Cozystack on bare metal or VMs and if you want to use its full power.

If you deploy Cozystack on a provided Kubernetes cluster, or if you only want to deploy a Kubernetes cluster without services, refer to the bundles overview and comparison.

1.2. Fine-tune the Components

You can add some optional components or remove ones that are included by default. Refer to the components reference.

If you deploy on VMs or dedicated servers of a cloud provider, you’ll likely need to disable MetalLB and enable a provider-specific load balancer, or use a different network setup. Check out the provider-specific installation section. It may include a complete guide for your provider that you can use to deploy a production-ready cluster.

1.3. Define Network Configuration

Replace example.org in data.root-host and data.api-server-endpoint with a routable fully-qualified domain name (FQDN) that you control. If you only have a public IP, but no routable FQDN, use nip.io with dash notation.

The following section contains sane defaults. Check that they match Talos node settings that you used in the previous steps. If you were using Talm to install Kubernetes, they should be the same.

ipv4-pod-cidr: "10.244.0.0/16"
ipv4-pod-gateway: "10.244.0.1"
ipv4-svc-cidr: "10.96.0.0/16"
ipv4-join-cidr: "100.64.0.0/16"

2. Install Cozystack by Applying Configuration

Create a namespace cozy-system and install Cozystack system components:

kubectl create ns cozy-system
kubectl apply -f cozystack.yaml
kubectl apply -f https://github.com/cozystack/cozystack/releases/latest/download/cozystack-installer.yaml

As the installation goes on, you can track the logs of installer:

kubectl logs -n cozy-system deploy/cozystack -f

Wait for a while, then check the status of installation:

kubectl get hr -A

Wait until all releases become to Ready state:

NAMESPACE                        NAME                        AGE    READY   STATUS
cozy-cert-manager                cert-manager                4m1s   True    Release reconciliation succeeded
cozy-cert-manager                cert-manager-issuers        4m1s   True    Release reconciliation succeeded
cozy-cilium                      cilium                      4m1s   True    Release reconciliation succeeded
cozy-cluster-api                 capi-operator               4m1s   True    Release reconciliation succeeded
cozy-cluster-api                 capi-providers              4m1s   True    Release reconciliation succeeded
cozy-dashboard                   dashboard                   4m1s   True    Release reconciliation succeeded
cozy-grafana-operator            grafana-operator            4m1s   True    Release reconciliation succeeded
cozy-kamaji                      kamaji                      4m1s   True    Release reconciliation succeeded
cozy-kubeovn                     kubeovn                     4m1s   True    Release reconciliation succeeded
cozy-kubevirt-cdi                kubevirt-cdi                4m1s   True    Release reconciliation succeeded
cozy-kubevirt-cdi                kubevirt-cdi-operator       4m1s   True    Release reconciliation succeeded
cozy-kubevirt                    kubevirt                    4m1s   True    Release reconciliation succeeded
cozy-kubevirt                    kubevirt-operator           4m1s   True    Release reconciliation succeeded
cozy-linstor                     linstor                     4m1s   True    Release reconciliation succeeded
cozy-linstor                     piraeus-operator            4m1s   True    Release reconciliation succeeded
cozy-mariadb-operator            mariadb-operator            4m1s   True    Release reconciliation succeeded
cozy-metallb                     metallb                     4m1s   True    Release reconciliation succeeded
cozy-monitoring                  monitoring                  4m1s   True    Release reconciliation succeeded
cozy-postgres-operator           postgres-operator           4m1s   True    Release reconciliation succeeded
cozy-rabbitmq-operator           rabbitmq-operator           4m1s   True    Release reconciliation succeeded
cozy-redis-operator              redis-operator              4m1s   True    Release reconciliation succeeded
cozy-telepresence                telepresence                4m1s   True    Release reconciliation succeeded
cozy-victoria-metrics-operator   victoria-metrics-operator   4m1s   True    Release reconciliation succeeded
tenant-root                      tenant-root                 4m1s   True    Release reconciliation succeeded

Installing on non-Talos OS

By default, Cozystack is configured to use the KubePrism feature of Talos Linux, which allows access to the Kubernetes API via a local address on the node. If you’re installing Cozystack on a system other than Talos Linux, you must update the KUBERNETES_SERVICE_HOST and KUBERNETES_SERVICE_PORT environment variables in the cozystack-installer.yaml manifest.

Dividing Control Plane and Worker Nodes

Normally Cozystack requires at least three worker nodes to run workloads in HA mode. There are no tolerations in Cozystack components that will allow them to run on control-plane nodes.

However, it’s common to have only three nodes for testing purposes. Or you might only have big hardware nodes, and you want to use them for both control-plane and worker workloads. In this case, you have to remove the control-plane taint from the nodes.

Example of removing control-plane taint from the nodes:

kubectl taint nodes --all node-role.kubernetes.io/control-plane-

3. Configure Storage

Kubernetes needs a storage subsystem to provide persistent volumes to applications, but it doesn’t include one of its own. Cozystack provides LINSTOR as a storage subsystem.

In the following steps, we’ll access LINSTOR interface, create storage pools, and define storage classes.

3.1. Check Storage Devices

  1. Set up an alias to access LINSTOR:

    alias linstor='kubectl exec -n cozy-linstor deploy/linstor-controller -- linstor'
    
  2. List your nodes and check their readiness:

    linstor node list
    

    Example output shows node names and state:

    +-------------------------------------------------------+
    | Node | NodeType  | Addresses                 | State  |
    |=======================================================|
    | srv1 | SATELLITE | 192.168.100.11:3367 (SSL) | Online |
    | srv2 | SATELLITE | 192.168.100.12:3367 (SSL) | Online |
    | srv3 | SATELLITE | 192.168.100.13:3367 (SSL) | Online |
    +-------------------------------------------------------+
    
  3. List available empty devices:

    linstor physical-storage list
    

    Example output shows the same node names:

    +--------------------------------------------+
    | Size         | Rotational | Nodes          |
    |============================================|
    | 107374182400 | True       | srv3[/dev/sdb] |
    |              |            | srv1[/dev/sdb] |
    |              |            | srv2[/dev/sdb] |
    +--------------------------------------------+
    

3.2. Create Storage Pools

  1. Create storage pools using ZFS or LVM.

    You can also restore previously created storage pools after a node reset.

    linstor ps cdp zfs srv1 /dev/sdb --pool-name data --storage-pool data
    linstor ps cdp zfs srv2 /dev/sdb --pool-name data --storage-pool data
    linstor ps cdp zfs srv3 /dev/sdb --pool-name data --storage-pool data
    

    linstor ps cdp lvm srv1 /dev/sdb --pool-name data --storage-pool data
    linstor ps cdp lvm srv2 /dev/sdb --pool-name data --storage-pool data
    linstor ps cdp lvm srv3 /dev/sdb --pool-name data --storage-pool data
    

    for node in $(kubectl get nodes --no-headers -o custom-columns=":metadata.name"); do
      echo "linstor storage-pool create zfs $node data data"
    done
    # linstor storage-pool create zfs <node> data data
    
  2. Check the results by listing the storage pools:

    linstor sp l
    

    Example output:

    +-------------------------------------------------------------------------------------------------------------------------------------+
    | StoragePool          | Node | Driver   | PoolName | FreeCapacity | TotalCapacity | CanSnapshots | State | SharedName                |
    |=====================================================================================================================================|
    | DfltDisklessStorPool | srv1 | DISKLESS |          |              |               | False        | Ok    | srv1;DfltDisklessStorPool |
    | DfltDisklessStorPool | srv2 | DISKLESS |          |              |               | False        | Ok    | srv2;DfltDisklessStorPool |
    | DfltDisklessStorPool | srv3 | DISKLESS |          |              |               | False        | Ok    | srv3;DfltDisklessStorPool |
    | data                 | srv1 | ZFS      | data     |    96.41 GiB |     99.50 GiB | True         | Ok    | srv1;data                 |
    | data                 | srv2 | ZFS      | data     |    96.41 GiB |     99.50 GiB | True         | Ok    | srv2;data                 |
    | data                 | srv3 | ZFS      | data     |    96.41 GiB |     99.50 GiB | True         | Ok    | srv3;data                 |
    +-------------------------------------------------------------------------------------------------------------------------------------+
    

3.3. Create Storage Classes

Create storage classes, one of which should be the default class.

  1. Create a file with storage class definitions. Below is a sane default example providing two classes: local (default) and replicated.

    storageclasses.yaml:

    ---
    apiVersion: storage.k8s.io/v1
    kind: StorageClass
    metadata:
      name: local
      annotations:
        storageclass.kubernetes.io/is-default-class: "true"
    provisioner: linstor.csi.linbit.com
    parameters:
      linstor.csi.linbit.com/storagePool: "data"
      linstor.csi.linbit.com/layerList: "storage"
      linstor.csi.linbit.com/allowRemoteVolumeAccess: "false"
    volumeBindingMode: WaitForFirstConsumer
    allowVolumeExpansion: true
    ---
    apiVersion: storage.k8s.io/v1
    kind: StorageClass
    metadata:
      name: replicated
    provisioner: linstor.csi.linbit.com
    parameters:
      linstor.csi.linbit.com/storagePool: "data"
      linstor.csi.linbit.com/autoPlace: "3"
      linstor.csi.linbit.com/layerList: "drbd storage"
      linstor.csi.linbit.com/allowRemoteVolumeAccess: "true"
      property.linstor.csi.linbit.com/DrbdOptions/auto-quorum: suspend-io
      property.linstor.csi.linbit.com/DrbdOptions/Resource/on-no-data-accessible: suspend-io
      property.linstor.csi.linbit.com/DrbdOptions/Resource/on-suspended-primary-outdated: force-secondary
      property.linstor.csi.linbit.com/DrbdOptions/Net/rr-conflict: retry-connect
    volumeBindingMode: Immediate
    allowVolumeExpansion: true
    
  2. Apply the storage class configuration

    kubectl create -f storageclasses.yaml
    
  3. Check that the storage classes were successfully created:

    kubectl get storageclasses
    

    Example output:

    NAME              PROVISIONER              RECLAIMPOLICY   VOLUMEBINDINGMODE      ALLOWVOLUMEEXPANSION   AGE
    local (default)   linstor.csi.linbit.com   Delete          WaitForFirstConsumer   true                   11m
    replicated        linstor.csi.linbit.com   Delete          Immediate              true                   11m
    

4. Configure Networking

Next, we will configure how the Cozystack cluster can be accessed. This step has two options depending on your available infrastructure:

  • For your own bare metal or self-hosted VMs, choose the MetalLB option. MetalLB is Cozystack’s default load balancer.

  • For VMs and dedicated servers from cloud providers, choose the public IP setup. Most cloud providers don’t support MetalLB.

    Check out the provider-specific installation section. It may have instructions for your provider, which you can use to deploy a production-ready cluster.

4.a MetalLB Setup

Cozystack has three types of IP addresses used:

  • Node IPs: constant and valid only within the cluster.
  • Virtual floating IP: used to access one of the nodes in the cluster and valid only within the cluster.
  • External access IPs: used by the load balancer to expose services outside the cluster.

Select a range of unused IPs to enable access to the services, for example, 192.168.100.200-192.168.100.250. These IPs should be from the same network as the nodes, or they should have all necessary routes to them.

Configure MetalLB to use and announce this range:

kubectl create -f metallb-l2-advertisement.yml
kubectl create -f metallb-ip-address-pool.yml

metallb-l2-advertisement.yml:

apiVersion: metallb.io/v1beta1
kind: L2Advertisement
metadata:
  name: cozystack
  namespace: cozy-metallb
spec:
  ipAddressPools:
    - cozystack

metallb-ip-address-pool.yml:

apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
  name: cozystack
  namespace: cozy-metallb
spec:
  addresses:
    # used to expose services outside the cluster
    - 192.168.100.200-192.168.100.250
  autoAssign: true
  avoidBuggyIPs: false

4.b. Public IP Setup

If your cloud provider does not support MetalLB, you can expose the ingress controller using the external IPs of your nodes.

Take IP addresses of the external network interfaces for your nodes. Add them to the externalIPs list in the Ingress configuration:

kubectl patch -n tenant-root ingresses.apps.cozystack.io ingress --type=merge -p '{"spec":{
  "externalIPs": [
    "192.168.100.11",
    "192.168.100.12",
    "192.168.100.13"
  ]
}}'

kubectl patch -n cozy-system configmap cozystack --type=merge -p '{
  "data": {
    "expose-external-ips": "192.168.100.11,192.168.100.12,192.168.100.13"
  }
}'

5. Finalize Installation

5.1. Setup Root Tenant Services

Enable etcd, monitoring, and ingress in your tenant-root:

kubectl patch -n tenant-root tenants.apps.cozystack.io root --type=merge -p '
{"spec":{
  "ingress": true,
  "monitoring": true,
  "etcd": true,
  "isolated": true
}}'

5.2. Check the Cluster State and composition

Check the persistent volumes provisioned:

kubectl get pvc -n tenant-root

example output:

NAME                                     STATUS   VOLUME                                     CAPACITY   ACCESS MODES   STORAGECLASS   VOLUMEATTRIBUTESCLASS   AGE
data-etcd-0                              Bound    pvc-4cbd29cc-a29f-453d-b412-451647cd04bf   10Gi       RWO            local          <unset>                 2m10s
data-etcd-1                              Bound    pvc-1579f95a-a69d-4a26-bcc2-b15ccdbede0d   10Gi       RWO            local          <unset>                 115s
data-etcd-2                              Bound    pvc-907009e5-88bf-4d18-91e7-b56b0dbfb97e   10Gi       RWO            local          <unset>                 91s
grafana-db-1                             Bound    pvc-7b3f4e23-228a-46fd-b820-d033ef4679af   10Gi       RWO            local          <unset>                 2m41s
grafana-db-2                             Bound    pvc-ac9b72a4-f40e-47e8-ad24-f50d843b55e4   10Gi       RWO            local          <unset>                 113s
vmselect-cachedir-vmselect-longterm-0    Bound    pvc-622fa398-2104-459f-8744-565eee0a13f1   2Gi        RWO            local          <unset>                 2m21s
vmselect-cachedir-vmselect-longterm-1    Bound    pvc-fc9349f5-02b2-4e25-8bef-6cbc5cc6d690   2Gi        RWO            local          <unset>                 2m21s
vmselect-cachedir-vmselect-shortterm-0   Bound    pvc-7acc7ff6-6b9b-4676-bd1f-6867ea7165e2   2Gi        RWO            local          <unset>                 2m41s
vmselect-cachedir-vmselect-shortterm-1   Bound    pvc-e514f12b-f1f6-40ff-9838-a6bda3580eb7   2Gi        RWO            local          <unset>                 2m40s
vmstorage-db-vmstorage-longterm-0        Bound    pvc-e8ac7fc3-df0d-4692-aebf-9f66f72f9fef   10Gi       RWO            local          <unset>                 2m21s
vmstorage-db-vmstorage-longterm-1        Bound    pvc-68b5ceaf-3ed1-4e5a-9568-6b95911c7c3a   10Gi       RWO            local          <unset>                 2m21s
vmstorage-db-vmstorage-shortterm-0       Bound    pvc-cee3a2a4-5680-4880-bc2a-85c14dba9380   10Gi       RWO            local          <unset>                 2m41s
vmstorage-db-vmstorage-shortterm-1       Bound    pvc-d55c235d-cada-4c4a-8299-e5fc3f161789   10Gi       RWO            local          <unset>                 2m41s

Check that all pods are running:

kubectl get pod -n tenant-root

example output:

NAME                                           READY   STATUS    RESTARTS       AGE
etcd-0                                         1/1     Running   0              2m1s
etcd-1                                         1/1     Running   0              106s
etcd-2                                         1/1     Running   0              82s
grafana-db-1                                   1/1     Running   0              119s
grafana-db-2                                   1/1     Running   0              13s
grafana-deployment-74b5656d6-5dcvn             1/1     Running   0              90s
grafana-deployment-74b5656d6-q5589             1/1     Running   1 (105s ago)   111s
root-ingress-controller-6ccf55bc6d-pg79l       2/2     Running   0              2m27s
root-ingress-controller-6ccf55bc6d-xbs6x       2/2     Running   0              2m29s
root-ingress-defaultbackend-686bcbbd6c-5zbvp   1/1     Running   0              2m29s
vmalert-vmalert-644986d5c-7hvwk                2/2     Running   0              2m30s
vmalertmanager-alertmanager-0                  2/2     Running   0              2m32s
vmalertmanager-alertmanager-1                  2/2     Running   0              2m31s
vminsert-longterm-75789465f-hc6cz              1/1     Running   0              2m10s
vminsert-longterm-75789465f-m2v4t              1/1     Running   0              2m12s
vminsert-shortterm-78456f8fd9-wlwww            1/1     Running   0              2m29s
vminsert-shortterm-78456f8fd9-xg7cw            1/1     Running   0              2m28s
vmselect-longterm-0                            1/1     Running   0              2m12s
vmselect-longterm-1                            1/1     Running   0              2m12s
vmselect-shortterm-0                           1/1     Running   0              2m31s
vmselect-shortterm-1                           1/1     Running   0              2m30s
vmstorage-longterm-0                           1/1     Running   0              2m12s
vmstorage-longterm-1                           1/1     Running   0              2m12s
vmstorage-shortterm-0                          1/1     Running   0              2m32s
vmstorage-shortterm-1                          1/1     Running   0              2m31s

Now you can get the public IP of ingress controller:

kubectl get svc -n tenant-root root-ingress-controller

example output:

NAME                      TYPE           CLUSTER-IP     EXTERNAL-IP       PORT(S)                      AGE
root-ingress-controller   LoadBalancer   10.96.16.141   192.168.100.200   80:31632/TCP,443:30113/TCP   3m33s

5.3 Access the Cozystack Dashboard

If you left this line in the ConfigMap, Cozystack Dashboard must be already available at this moment:

data:
  expose-services: "dashboard,api"

If the initial configmap did not have this line, patch it with the following command:

kubectl patch -n cozy-system cm cozystack --type=merge -p '{"data":{
    "expose-services": "dashboard"
    }}'

Open dashboard.example.org to access the system dashboard, where example.org is your domain specified for tenant-root. There you will see a login window which expects an authentication token.

Get the authentication token for tenant-root:

kubectl get secret -n tenant-root tenant-root -o go-template='{{ printf "%s\n" (index .data "token" | base64decode) }}'

Log in using the token. Now you can use the dashboard as an administrator.

Further on, you will be able to:

  • Set up OIDC to authenticate with it instead of tokens.
  • Create user tenants and grant users access to them via tokens or OIDC.

5.4 Access metrics in Grafana

Use grafana.example.org to access the system monitoring, where example.org is your domain specified for tenant-root. In this example, grafana.example.org is located at 192.168.100.200.

  • login: admin
  • request a password:
    kubectl get secret -n tenant-root grafana-admin-password -o go-template='{{ printf "%s\n" (index .data "password" | base64decode) }}'
    

Next Steps


Cozystack ConfigMap Reference

Reference for the Cozystack ConfigMap, which defines key configuration values for a Cozystack installation and operations.

Cozystack Bundles: Overview and Comparison

Cozystack bundles reference: composition, configuration, and troubleshooting.

Cozystack Components Reference

Full reference for Cozystack components.